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Nonlinear dynamics has an important role when designing modern synchrotron lat-

tices. In this letter, we introduce a new method of using a square matrix to analyze
periodic nonlinear dynamical systems 1,2. Applying the method to the National Syn-

chrotron Light Source II storage ring lattice has helped to mitigate the chaotic motion

within its dynamic aperture. For a given dynamical system, the vector space of a square
matrix can be separated into different low dimension invariant subspaces according to

their eigenvalues. When Jordan decomposition is applied to one of the eigenspaces, it

yields a set of accurate action-angle variables. The distortion of the new action-angle
variables provides a measure of the nonlinearity. Our studies show that the common

convention of confining the tune-shift with amplitude to avoid the crossing of resonance

lines may not be absolutely necessary. We demonstrate that the third order resonance
can be almost perfectly compensated with this technique. The method itself is general,

and could be applied to other nonlinear systems.

1. Introduction

Long-term nonlinear behavior of charged particles in synchrotron plays a vital role in

beam dynamics. To understand the impact nonlinear behavior has, one can analyze

particle motion under many iterations of the one-turn-map. The reliable numerical

approach is using appropriate local symplectic integration methods3–5. For the

analysis of the dynamics, however, one can use a more compact representation of

the one-turn-map to extract relevant information. There are many approaches one

can take, such as canonical perturbation theory, Lie operators, power series, and

normal form6–21, etc. Here, we would like to study this problem from a somewhat

different perspective (i.e., using linear algebra techniques.) The detailed theory

on the method has been explained in ref.1,2. We will summarize this method in

Section 2, and then describe its applications in Section 3.

2. Theory

For a given periodic system, such as a particle moving in a synchrotron, its status can

be represented by the complex normalized variable 10,12,22,23 z = x̄− ip̄ =
√

2Jeiψ

and its conjugate z∗ = x̄+ ip̄ =
√

2Je−iψ. We use these to form a truncated vector

Z = (1, z, z∗, z2, zz∗, · · · , z∗n)T , where (J, ψ) are linear action-angle variables, T

is the vector transpose, and n is the truncated order. The one-turn-map from an

initial status Z0 to its final status Z1 is represented by a square matrix M:

Z1 = MZ0. (1)
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The matrix M is upper-triangular, and has the form

M =


1 0 · · · 0

0 M11 · · · M1n

... 0
. . .

...

0 0 · · · Mnn

 . (2)

Here different submatrices Mij have different dimensions. All diagonal blocks Mii’s

are square diagonal submatrices.

Since the matrix is upper-triangular, its eigenvalues are given by its diagonal

elements in the form of eimµ, where m is an integer, and µ is the linear tune. We

can separate the full space spanned by the matrix columns into different invariant

subspaces according to the eigenvalues. We found that the simplest invariant sub-

space eiµ already provides a wealth of information about the dynamical system and

the high dimension matrix is reduced to a much lower dimension. For example, for

a 7th order 4D phase space system, its original dimension is 330×330. After Jordan

decomposition, a set of 4 left-eigenvectors uk=0,··· ,3 span the invariant subspace eiµ.

A matrix U consists of these 4 row vectors satisfies the left-eigenvector equation

UM = eiµI+τU = NU (3)

where the 4×4 matrix N is the Jordan block with the eigenvalue eiµ, corresponding

to the eiµ invariant subspace inside the space of vector Z. I is the identity matrix

in this space, while τ is a superdiagonal matrix:

τ =


0 1

0
. . .

. . . 1

0

 . (4)

The mapping from Z0 to Z1 generated by the one-turn-map M, when projected

into this subspace, can be re-written as

W1 ≡ UZ1 = UMZ0 = eiµI+τUZ0 ≡ eiµI+τW0. (5)

W0 can be written as a one-column vector

WT
0 = (w0, w1, w2, . . . , wm−1), (6)

where m is the dimension of the invariant subspace. KAM theory states that the

invariant tori are stable under small perturbation6,13,24. For sufficiently small am-

plitude of oscillation in Z, the invariant tori are deformed and survive. So the

system has a nearly stable frequency and when the amplitude is small, the fluctua-

tion of the frequency is also small. Thus for a specific initial condition described by

Z0, the rotation in the eigenspace should be represented by a phase factor ei(µ+φ)

as

W1 = eiµI+τW0
∼= ei(µ+φ)W0. (7)
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where φ depends on the initial condition.

τ in Eq. (4) has no proper eigenvector, but only generalized eigenvectors. How-

ever, as we increase the order of the Taylor expansion, the dimension of the

eigenspace increases and approaches infinity, and the eigenvector of τ is defined

as a coherent state25,26:

τW0
∼= iφW0. (8)

The polynomials in Eq. (6) are w0 = u0Z0, w1 = u1Z0, w2 = u2Z0, · · · . Then

Eq. (8) reads as

τ


w0

w1

...

wm−1

 =


w1

w2

...

0

 ∼=


iφw0

iφw1

...

iφwm−1

 . (9)

When the invariant tori survive and there is a stable frequency, we see that Eq. (9)

requires

iφ =
w1

w0

∼=
w2

w1
. . . ∼=

wm−1

wm−2
. (10)

Therefore only those vectors W0 which satisfy Eq. (10) with φ as a real number

represent a motion with a stable frequency given by a phase advance µ + φ every

turn. From w0 = u0Z0, · · · , we can see that φ is determined by the initial value Z0.

µ represents the zero amplitude tune while φ is the amplitude dependent tune-shift.

Thus we get a set of new action-angle variables (rj , θj)

wj = |wj |eiθj = rje
iθj , j = 0, 1, · · · . (11)

Even though all (rj , θj)’s behave like action-angle variables, they have different

power orders of monomials of z, z∗ , and hence represent approximation of the

action-angle variable to different precisions. For example, in the case of a 7th order

square matrix, w0 has terms of powers from 1st to 7th order, w1 has terms of

powers from 3rd to 7th order while w3 has only a small 7th order term z(zz∗)3.

w3 provides little information about the rotation in the phase space while w0 has

detailed information. In this paper, we only focus on w0.

A stable motion means the invariant tori can survive with multiple turns. Ap-

plying Eq. (7) n times, we obtain

Wn = einµI+nτW0 = einµenτW0. (12)

After a derivation based on Eq. (10) and (12), we recognize that a stable motion

requires (see Eq.(1.19) of 1)

Im(φ) ≡ Im(− iw1

w0
) ≈ 0; ∆ ≡ w2

w0
− (

w1

w0
)2 ≈ 0. (13)

We refer to Eq. (13) as the “coherence conditions” of a stable motion. w0, φ, and

∆ are all functions of the initial value of z, z∗. For a given initial value of |w0|, the
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distortion of the real part of φ from a constant is the tune fluctuation, while the

imaginary part of φ gives amplitude fluctuation, i.e., the variation of r0 = |w0| after

many turns. The non-zero ∆ indicates a deviation from a coherent state, and it

seems to be related to the Liapunov exponents6 and the region of stable motion.

3. Application

In this Section, we give an example of applying the square matrix method to op-

timize a storage ring’s dynamic aperture. Consider one particle with initial linear

actions Jx,y. It is launched for multi-turns tracking. The linear actions are no

longer constants when nonlinearity dominates over linear dynamics. There is a

distortion from flat planes in the Poincaré section. We characterize this distortion

by ∆J/J = (Jmax − Jmin)/Jmean. When the distortion is large, particles receive

large nonlinear kicks and the motion becomes chaotic or even unstable. The stable

region in phase space is defined as dynamic aperture. The goal of nonlinear op-

timization is to increase the dynamic aperture. In the 1D case, this is equivalent

to optimizing the trajectories in the normalized phase space x̄ − p̄x so that they

are as close as possible to circles (see FIG. 1, top right plot). In order to minimize

∆J/J , we need to calculate Jx,y from constant |wx,y|, in which an inverse function

calculation is required. There is a way to avoid the inverse function calculation.

Minimizing ∆J/J is equivalent to optimizing the system so that constant planes in

the Poincaré sections in Jx,y space are mapped to approximate flat planes in the

Poincaré sections in the |wx,y| space (see FIG. 2), and vice versa. Therefore we

map a pair of constant Jx,y planes into a pair of surfaces of rx,y = |wx,y|. Then we

characterize the nonlinear distortion by the deviation of surfaces of rx,y from flat

planes, given by

∆r

r̄
=

∆|w|
|w̄|

=
rmax − rmin

r̄
, (14)

as a measure of nonlinearity. Here r̄ is the mean value of r. The system can be

optimized by making the surfaces rx,y as close as possible to constants for various

amplitudes.

An application of this method was applied to the National Synchrotron Light

Source-II (NSLS-II), when the lattice had a linear chromaticity of +7 in both planes.

The lattice layout is described in ref.27. After tuning the chromaticity to +7 with

3 families of chromatic sextupoles, the optimization knobs were those 6 families of

non-chromatic sextupoles. In this case we selected 3 sets of constant Jx,y in the

Jx,y−ψx−ψy Poincaré section. In each set, we cast 64 initial coordinates uniformly

distributed on the ψx − ψy plane. For every set of sextupole configuration, we

calculated the new action rx,y for all of the 3 sets of particles, using the formula w0 =

u0Z0. For each set, the nonlinearity measure from Eq. (14) was the optimization

objective. In order to control the distortion for different sets simultaneously, we

adopted the multi-objective genetic algorithm (MOGA)28. The choice of initial
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Fig. 1. Comparison of simulated trajectories (top) and spectral analysis (bottom) of ȳ−p̄y motion
for Solution A (left) and Solution B (right). In both plots, 5 pairs of initial conditions with the

x amplitude gradually increases from 10 to 20mm, and y increases proportional to x from 1 to

3mm. The spectral analysis for an initial condition x = 20mm and y = 3mm also indicates that
Solution A’s motion (bottom, left) is much more chaotic than B (bottom, right). The occupied

area of Solution A becomes much larger for long-term tracking (> 15, 000 turns), but Solution B
remains almost the same, which indicates the square matrix method is superior in optimizing the

long term stability.

values was not unique. The question about how many sets should be used, and how

many points should be cast inside each set is open for future exploration. After 85

generations and an evolution of 4000 populations, the optimizer converged to an

optimal solution, which we labeled as Solution B in the following section.

Then we compared two solutions, A and B. Solution A is obtained by a con-

ventional method - minimizing 8 first-order and 23 second-order nonlinear driving-

terms, including amplitude-dependent-tune-shift12,29,30. Solution B was obtained

using the square matrix method as outlined above. FIG. 2 shows that the square
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Fig. 2. Comparison of the distortion of ry mapped from the same constant Jx,y planes for both
solutions. Solution B plane is deliberately shifted up for a clear view.

matrix method can significantly reduce the r = |w0| distortions from a constant at

a given initial amplitude x = 20mm and y = 3mm. As expected, we also observed

that the trajectories of Solution B are much more linear than those of Solution A

in the phase space (FIG. 1, top). The spectral analysis (FIG. 1, bottom) indicates

that the motion in the case of Solution B is mainly dominated by a single frequency.

Here we note that the tune footprint (see FIG. 3) of Solution B has very large

amplitude-dependent tune shift in both planes. It is remarkable that many parti-

cles can survive on a number of resonances at large amplitudes. FIG. 4 illustrates

a simulated horizontal trajectory in phase space while its horizontal tune is almost

exactly at a third order resonance. This indicates the irregularity near the reso-

nance 3νx = n, has been almost completely eliminated. Usually 3νx is regarded

as a dangerous resonance in a sextupole-dominated nonlinear lattice. For some

machines, tunes can cross it at small amplitudes with no beam loss. When a par-
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Fig. 3. Tune footprint for on-momentum dynamic aperture of Solution B. The color of each dot

represents its tune diffusion log10
√

∆ν2x + ∆ν2y as defined in frequency map analysis31,32. When

the tune crosses the third order resonance 3νx = n, there is no beam loss, and even no obvious

diffusion.

ticle’s tune approaches the resonance, its amplitude will be blown-up and its tune

is shifted off the resonance, which serves as a stability mechanism. The nonlinear

force drives particles’ tunes and amplitudes to vary, which leads to a visible tune

diffusion and amplitude fluctuation31. In this case, the stop-band width is wide,

and the motion stability is sensitive to errors. It is difficult for particles to cross

the resonance at large amplitudes. In the past, the convention was to confine the

tune footprint within a narrow range. The behavior of solution B, however, is very

different than Solution A. FIG. 4 illustrates that one particle can stably stay at the

3νx resonance without obvious tune diffusion and amplitude fluctuation at a large

amplitude around x = 13.5mm. For each trajectory an unique tune is determined

by its amplitude, but not the phase angle. Its nonlinear behavior is like a near-

integrable system. Further exploration to understand nonlinear dynamic behavior

in the vicinity of resonances is still under way.

Our simulation shows that Solution B is quite tolerant to magnet imperfections.

After the specified systematic and random multipole errors (the typical multipole

components normalized to the main components evaluated at a 25mm radius is

around the order of 1 − 3 × 10−4 33), and some physical apertures limitation are

introduced into the tracking simulation, the dynamic aperture remains sufficient
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Fig. 4. Simulated horizontal phase space trajectories with their tunes at a third order resonance.
In the left plots and their zoomed-in subplots, the red lines represent constant linear actions. The

blue dots are the simulated turn-by-turn data. The frequency spectrums (right) indicates that the
particle can stably stay at the resonance line. The top plots are for an ideal machine, and the

bottom plots for the machine with errors.

for off-axis injection (see FIG. 5, right). In particular, particles can still cross the

resonance 3νx = n smoothly, and the cancellation of resonance is well preserved

(FIG. 4, bottom). Experimentally, under this sextupole configuration, 100% off-

axis injection efficiency into the NSLS-II ring has been achieved, which is consistent

with our analysis and simulation.

It is worth noting that when tight physical apertures are present in the storage

ring, particles with a chaotic motion can be scraped by the boundary of the phys-

ical apertures, which results in a reduction of effective dynamic aperture. Regular

motion is not limited in this way as can be seen in FIG. 5.

Over decades, we have followed a common convention – choosing the fractional

tunes far away from low-order resonances. With this design, sextupoles are tuned
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Fig. 5. Comparison of effective dynamic apertures of two Solutions when a physical aperture

limitation y = 5mm and multipole errors are present. The blue lines are the aperture averaged
over 80 random seeds (light-gray lines). The top-left corner of Solution A’s aperture is scraped

due to the chaotic vertical motion.

to confine amplitude-dependent tune-shift in order to avoid crossing them. The

solution obtained with our method, however, obviously violates this convention.

This indicates that confining tune footprint in order to avoid resonance line-crossing

is not absolutely necessary in lattice optimization. Our method suggests a new

lattice design philosophy, where instead of confining tune footprint excursion, one

can tune sextupoles to minimize the variation of rx,y = |wx,y| at different amplitudes

to optimize dynamic aperture.

4. Conclusion

Through the use of linear algebra techniques we developed a new method for analyz-

ing periodic, nonlinear dynamical systems. Applying Jordan decomposition to the

eigenspace of the square matrix, we found a set of accurate action-angle variables.

The distortions from the flat planes after mapping constant linear actions to the new

actions are one measure of nonlinearity. Several other measures, such as the two

measures given by Eq. (13) could be used in future exploration. Our method was

successfully field-tested by optimizing the NSLS-II lattice. Most importantly, opti-

mization using our square matrix method has generated an unprecedented nonlinear

lattice which allows particles to stay exactly on resonance. Thus the new approach

allows relaxed tune footprint, and widely opened a potential new direction for the

search of larger dynamic aperture. It also provides a different perspective to guide

the understanding of the nonlinear dynamics. The square matrix method is general

and can be applied to other nonlinear dynamical systems with periodic structure,

such as celestial mechanics.
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